博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
阅读量:5125 次
发布时间:2019-06-13

本文共 889 字,大约阅读时间需要 2 分钟。

For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

 

Solution. This follows from direct computations.

转载于:https://www.cnblogs.com/zhangzujin/p/4106766.html

你可能感兴趣的文章
累觉不爱
查看>>
Flyweight Design Pattern 共享元设计模式
查看>>
ftp的本地用户搭建
查看>>
Flume环境搭建_五种案例(转)
查看>>
uva11991 Easy Problem from Rujia Liu?
查看>>
你理解我的意思么?
查看>>
CEF 添加F5刷新快捷键
查看>>
线性回归的Spark实现 [Linear Regression / Machine Learning / Spark]
查看>>
贝叶斯原理及其推断简介
查看>>
根据txt文件处理的方法总结
查看>>
uWSGI安装配置
查看>>
django_4:数据库1——django操作数据库
查看>>
grid layout
查看>>
VUE 使用中踩过的坑
查看>>
Solarized ----vim配色方案
查看>>
2019湖南多校第三场
查看>>
数据库连接
查看>>
如何写一个计算器?
查看>>
为什么选用 React 创建混合型移动应用?
查看>>
手把手教你撸一个简易的 webpack
查看>>